Modeling Retrieval Error Covariances for Global Data Assimilation

نویسندگان

  • Arlindo da Silva
  • Christopher Redder
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predicted errors of tropospheric emission spectrometer nadir retrievals from spectral window selection

[1] Error covariances and vertical resolutions are reported for Tropospheric Emission Spectrometer (TES) nadir-view retrievals of surface temperature, atmospheric temperature, H2O, O3, CO, and CH4. These error covariances are computed as a result of selecting spectral windows that maximize the information content of simulated, TES nadir-view atmospheric retrievals of four regions representative...

متن کامل

Ensemble-based atmospheric data assimilation

Ensemble-based data assimilation techniques are being explored as possible alternatives to current operational analysis techniques such as threeor four-dimensional variational assimilation. Ensemble-based assimilation techniques utilise an ensemble of parallel data assimilation and forecast cycles. The background-error covariances are estimated using the forecast ensemble and are used to produc...

متن کامل

Suboptimal Schemes for Atmospheric Data Assimilation Based on the Kalman Filter

This work is directed toward approximating the evolution of forecast error covariances for data assimilation. We study the performance of di erent algorithms based on simpli cation of the standard Kalman lter (KF). These are suboptimal schemes (SOS's) when compared to the KF, which is optimal for linear problems with known statistics. The SOS's considered here are several versions of optimal in...

متن کامل

The local ensemble transform Kalman filter and the running-in-place algorithm applied to a global ocean general circulation model

The most widely used methods of data assimilation in large-scale oceanography, such as the Simple Ocean Data Assimilation (SODA) algorithm, specify the background error covariances and thus are unable to refine the weights in the assimilation as the circulation changes. In contrast, the more computationally expensive Ensemble Kalman Filters (EnKF) such as the Local Ensemble Transform Kalman Fil...

متن کامل

Using Improved Background-Error Covariances from an Ensemble Kalman Filter for Adaptive Observations

A method for determining adaptive observation locations is demonstrated. This method is based on optimal estimation (Kalman filter) theory; it determines the observation location that will maximize the expected improvement, which can be measured in terms of the expected reduction in analysis or forecast variance. This technique requires an accurate model for background error statistics that var...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996